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Abstract
Background: Heat-related illnesses are a critical concern for military personnel, especially those  
unfamiliar with hot climate regions. The Royal Thai Army (RTA) implements a 10-week military train-
ing program encompassing four phases: (1) Heat acclimatization training, (2) Combat fundamentals 
and unarmed combat training, (3) Armed combat training and tactical training, and (4) Field training 
exercise and evaluations. 
Objective: This study aimed to conduct a predictive analysis of heat-related illnesses to enhance  
prevention programs.
Methods: The study utilized secondary data from the RTA Medical Department, incorporating  
variables such as age, occupation, education, underlying diseases, smoking and alcohol consumption, 
sleep duration, exercise, medication history, body mass index (BMI), weight loss, body temperature, 
dark urine, heat rash, and environmental humidity. Multiple machine learning algorithms were  
employed to develop predictive models.
Results: The samples comprised 809 male recruits (103,051 encounters) with an average age of 22. 
Approximately 12% of the recruits had a BMI ≥30 kg/m2, while nearly 70% and 90% reported tobacco 
use and alcohol consumption in the past 12 months, respectively. Among the recruits, 16% reported 
substance use within the preceding 30 days. The eXtreme Gradient Boosting (XGB) model achieved 
91% accuracy in predicting heat-related illnesses before Phase 2. The top five predictive variables were 
Lopburi Province (central region), Songkhla Province (southern region), and Bangkok (capital city), 
sleep duration before joining military training (hours), and age (years).
Conclusion: This study, which applied machine learning techniques to predict heat-related illnesses 
among Thai recruits, can potentially impact the health and training of military personnel. The compar-
ative analysis of various algorithms identified the XGB model as the optimal performer in predicting 
heat-related illnesses during the combat fundamentals and unarmed combat training phase. However, 
it is essential to note that further study is needed to enhance the applicability of our predictive model, 
which includes expanding its use to new cohorts of Thai conscripts, underscoring our research’s  
ongoing nature.
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Introduction
 Heat-related illnesses encompass a range of 
symptoms that arise from the excessive accumu-
lation of body heat, typically due to prolonged 
exposure to elevated ambient temperatures or  
intense physical activity.(1) Prolonged overheat-
ing can impair the thermoregulatory mechanism 
of the hypothalamus and other vital organs, such 
as the heart, kidneys, liver, muscles, and brain. (2, 3) 

Clinical manifestations such as heat rash, edema, 
cramping, tetany, syncope, heat exhaustion, and 
heat stroke are observed within the spectrum of 
heat-related illnesses. Among these conditions, 
heat stroke is the most severe, with the potential 
to cause fatalities and organ failure. According 
to the international classification of heat-related 
illnesses, heat cramps, syncope, heat exhaustion, 
and heat stroke are categorized as severe.(2, 4, 5)

 Heat stroke is characterized by a core body 
temperature surpassing 40 ºC, consequent to ex-
posure to a hot and humid environment, often 
accompanied by altered consciousness. Delayed 
treatment significantly amplifies the risks of  
severe complications and escalates the fatality 
rate by up to 50%.(6, 7) In a report issued by the 
US Armed Forces Health Surveillance Division 
in 2021, 488 incidents of heat stroke and 1,864 
cases of heat exhaustion were reported during the 
year. In the Central Command Area of Responsi-
bility, i.e., Southwest Asia/Middle East, 312 heat 
illnesses were diagnosed and treated over the 
five-year surveillance period, with heat stroke 
constituting 6.4% of these cases.(8) In Thailand, 
heat-related illnesses represent a pressing pub-
lic health concern, particularly concerning mil-
itary operations. However, studies reporting the  
incidence of heat-related illnesses in the coun-
try remain limited. According to the Bureau 
of Occupational and Environmental Diseases  
Thailand, the annual rate of heat-related illness  
in 2018 was 0.12 per 100,000 population.(9) 
 Contributing factors to heat stroke can be  
categorized into individual and environmental 

determinants within the purview of our study. 
Individual factors encompass variables such as 
obesity, dehydration, heat intolerance, sleep 
deprivation, acute illness, medication use, sub-
stance addiction, alcohol consumption, skin dis-
orders, age, and prior history of heat stroke.(10-13)  
Environmental factors encompass ambient  
temperature, humidity levels, exercise intensity, 
and participation in uncontrolled physically  
demanding activities.(6, 14-17) Timely intervention 
for heat stroke is crucial to prevent severe  
complications, including organ dysfunction and 
mortality. Initial management focuses on reducing 
core temperature below 39 ºC within 30 minutes, 
followed by rapid transfer to a medical facility.(18) 
Considering the preventability and predictability 
of heat stroke, our study emphasized primary 
prevention strategies to safeguard the health of 
military recruits. This study aimed to develop 
predictive analytics models that help military 
trainers adjust training programs for high-risk 
trainees, enabling early detection of potential 
heat-related illnesses during the initial five weeks 
encompassing the combat fundamentals and  
unarmed combat training phase.

Methods 
Database and Data Collection
 In 2009, the Royal Thai Army (RTA) initiated 
the RTA Heat-Related Illnesses Prevention Pro-
gram for conscripts in response to annual reports 
of heat-related illnesses during the 10-week 
basic military training program. Initially, the  
program focused on environmental factors such 
as temperature (in Celsius) and humidity. The 
RTA used flag signs representing different hu-
midity ranges to regulate and guide everyone’s 
training duration and water consumption. In 
2012, the RTA identified additional factors as-
sociated with heat-related illnesses, including 
body mass index (BMI), acute respiratory and 
gastrointestinal illnesses, and illicit drug usage. 
A screening process was implemented to identify 
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conscripts at high risk of heat-related illnesses, 
and lower-intensity training was provided to 
these groups. Following a high incidence rate of 
cases, the RTA adjusted its protocols and preven-
tion program to enhance surveillance and out-
comes. The revised program consisted of four 
phases: (1) Heat acclimatization training phase, 
(2) Combat fundamentals and unarmed combat 
training phase, (3) Armed combat training and 
tactical training phase, and (4) Field training 
exercise and evaluation phase. Furthermore, a 
specific protocol was added for conscripts with 
a BMI over 30 kg/m² to enhance the surveillance 
program.
 Data collection for this study was conducted 
by the RTA Medical Department, utilizing stan-
dardized questionnaires administered to all con-
scripts who provided signed informed consent 
during the 10-week basic military training pro-
gram annually since 2009. The questionnaires 
covered various aspects, including environmental 
factors, individual factors, unit information, and 
daily observations. Well-trained military trainers 
measured wet- and dry-bulb temperatures in the 
training areas at 7:00 am, 11:00 am, 1:00 pm, and 
4:00 pm on weekdays. Relative humidity was 
calculated based on a standard relative humidity 
table.(19) For our study, we utilized secondary 
data from the RTA Medical Department data-
base, specifically from May to July 2013, with 
the approval of the Institutional Review Board 
of the Royal Thai Army Medical Department 
(S055h/61_Exp).
 The collected data encompassed various  
conscript characteristics, including age, body 
weight (kilograms), height (in centimeters), un-
derlying diseases, occupation, education, income, 
smoking and alcohol consumption habits, drug 
usage, exercise patterns, and workplace envi-
ronment. We included temperature and humidity 
measurements four times a day regarding envi-
ronmental factors. Daily vital information such as 
body temperature, weight, and signs and symp-
toms including fever, common cold, sore throat, 
headache, diarrhea, heat rash, heat edema, heat 
cramp, heat tetany, heat syncope, heat exhaustion, 
and urine color (ranging from light yellow to 
dark brown) were also included in the dataset. 

Experimental Design and Data Analysis
 Previous studies on heat-related illnesses 
have explored associated factors using multivar-
iate statistical analysis. More recently, machine 
learning (ML) and deep learning (DL) techniques 
have emerged as practical tools for disease  
prediction. ML algorithms have been employed 
to predict hospital readmission,(20, 21) DL models 
have been utilized for skin cancer identification, (22) 

and DL algorithms have been developed to diag-
nose diabetic retinopathy from retinal images.(23) 

In this research, we leveraged ML and DL algo-
rithms to construct predictive models to assist 
conscript supervisors in forecasting heat-related 
illnesses during training, aiming to reduce  
incidence rates and associated complications.  
We employed various methods, from traditional 
ML to DL algorithms. The ML methods employed 
encompassed the generalized linear model 
(GLM),(24) k-nearest neighbors (kNN), (25) random 
forest (RF),(26) and eXtreme gradient boosting 
(XBG).(27) The DL methods comprised the deep 
neural network (DNN)(28) and the convolutional 
neural network (CNN).(29) The selected methods 
are expected to yield meaningful predictive  
capabilities. 
 The primary focus of this study was to predict 
heat-related illnesses, excluding heat rash, during 
the heat acclimatization training phase (Phase 1) 
and the combat fundamentals and unarmed com-
bat training phase (Phase 2). Predicted groups 
of conscripts were then transferred to adjusted  
training programs to prevent incidents proactive-
ly. A descriptive analysis was conducted to char-
acterize the study population. Following data  
preprocessing, the dataset was divided into a 
70:30 ratio for training and testing sets. To com-
pare accuracy, sensitivity, specificity, and the area 
under the receiver operating characteristic curve 
(AUC), we performed 10-fold cross-validation  
with  different models. Given the imbalanced  
nature of the dataset, we employed the Synthetic 
Minority Over-sampling Technique (SMOTE)(30) 

on the training set to address this issue before 
fitting the models. Model performance was validated 
using a confusion matrix, and measures such as 
sensitivity, specificity, positive predictive value 
(PPV), negative predictive value (NPV), and 
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AUC were computed. Subsequently, we selected 
the model with the best performance without 
overfitting to continue the analysis. The analysis 
was primarily conducted using the R 3.4.2  
programming language, with the assistance of 
the Caret (31) and Keras (32) packages. 

Results 
 A total of 809 male conscripts (103,051  
encounters) aged over 22 years were included  
in this study. Most of the study population had 
normal weight, while 11.9% of the subjects had 
a BMI ≥30 kg/m2. Approximately 70% and 90% 
of the conscripts reported smoking and alcohol 
consumption in the past 12 months, respectively. 
Among those who consumed alcohol, 77%  
reported drinking alcohol within the 30 days 
preceding the training. Most conscripts had no 
underlying diseases, although some reported  
a history of allergy/asthma (7.7%), headache/ 
migraine (4.7%), and anemia/thalassemia (1.61%). 
In terms of medication history in the past 30 days, 
127 conscripts (15.7%) reported using substances 
(Table 1). Data were collected from various  
regions, including Chiang Mai Province (northern 
region), Ubon Ratchathani Province (northeastern 
region), Lopburi Province (central region),  

Songkhla Province (southern region), and  
Bangkok (capital city). Comparing these regions, 
the highest incidence of heat-related illnesses 
was observed in Chiang Mai Province (22 cases) 
and Songkhla Province (21 cases). In contrast, 
Lopburi Province had no reported cases and the 
lowest average humidity (Table 2).
 To determine the optimal performance of our 
predictive models, we employed three approaches: 
(1) predicting heat-related illnesses before 
Phase 2, (2) predicting heat-related illnesses 
during Phase 2, and (3) predicting and classi-
fying heat-related illness incidence during both 
Phase 1 and Phase 2. The third approach yielded 
four classification outcomes: (1) no incidence in 
both phases, (2) incidence in Phase 1 but no inci-
dence in Phase 2, (3) no incidence in Phase 1 but 
incidence in Phase 2, and (4) incidence in both 
phases. Following the application of multiple ML 
and DL algorithms using the three approaches, 
the performance of each model was assessed and 
reported in Table 3. Considering the training 
program’s different periods, we selected the first 
approach, which allows for timely intervention 
for new conscripts. The results indicated that  
the XBG and RF models demonstrated the best 
performance, followed by the DNN model.

Table 1. Characteristics of participants (N=809)

n %
Age 21.550.73(21.00-29.00)
BMI (before training, kg/m2)*

18.5 76 9.39
18.5-22.9 42 5.19
23.0-24.9 490 60.57
25.0-29.9 105 12.98
30 96 11.87

Occupation
Unemployed 63 7.79
Student 118 14.59
Agriculturist/Farmer 231 28.55
Office employee 194 23.98
Others 203 25.09
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Table 2. Characteristics of training area in Thailand

Province Region Average Temperature 
(Celsius)*

Average humidity 
(%)* No. of cases

Lopburi Central 33.6 53.8 0
Ubon Ratchathani Northeastern 31.8 60.5 9
Chiang Mai Northern 32.2 51.5 22
Songkhla Southern 31.6 67.6 21
Bangkok Capital city 32.4 59.3 1

*Temperature and humidity at 7:00 am, 11:00 am, 1:00 pm, and 4:00 pm on weekdays during the 
10-week training 

n %
Education

Primary school and lower 155 19.16
Middle school 290 35.85
Secondary school 168 20.77
Higher than secondary school 196 24.22

Smoking in the past 12 months
Never 195 24.10
Ex-smoke 56 6.92
Smoke 558 68.97

Alcohol drinking in the past 12 months
Never 52 6.43
No 64 7.91
Yes 693 85.66

Alcohol drinking in the past 30 days
No 185 22.87
Yes 624 77.13

Underlying diseases
No underlying disease 574 70.95
Allergy/Asthma 62 7.66
Headache/Migraine 38 4.70
Anemia/Thalassemia 13 1.61

Medications in the past 30 days
No medications 264 32.63
Substances 127 15.70
NSAIDs 103 12.73
Diuretics 21 2.60
Sedative 18 2.22

*WHO/IASO/IOTF. The Asia-Pacific perspective: Redefining obesity and its treatment.
Health Communications Australia: Melbourne, 2000

Table 1. Characteristics of participants (N=809) (Cont.)



6/11

JOURNAL OF SOUTHEAST ASIAN MEDICAL RESEARCHe189

Table 3. Performance of machine learning and deep learning models

Models Accuracy (95%CI) AUC Sensitivity Specificity
First Approach (Before Phase 2)

XGB 0.91 (0.85, 0.94) 0.73 0.39 0.94
RF 0.91 (0.85, 0.94) 0.81 0.31 0.94
kNN 0.81 (0.75, 0.85) 0.76 0.46 0.83
GLM 0.83 (0.77, 0.87) 0.77 0.23 0.85
DNN 0.89 (0.85, 0.93) 0.87 0.57 0.91
CNN 0.53 (0.47, 0.60) 0.62 0.79 0.52

Second Approach (During Phase 2)
XGB 0.80 (0.75, 0.85) 0.73 0.33 0.83
RF 0.80 (0.74, 0.85) 0.80 0.47 0.82
kNN 0.71 (0.64, 0.76) 0.76 0.47 0.72
GLM 0.78 (0.72, 0.83) 0.76 0.47 0.80
DNN 0.84 (0.79, 0.88) 0.79 0.38 0.87
CNN 0.68 (0.62, 0.74) 0.69 0.56 0.68

Third Approach (During both Phase 1 and 2)**
XGB 0.86 (0.81, 0.90) 0.74
RF 0.78 (0.72, 0.83) 0.78
kNN 0.66 (0.60, 0.72) 0.74

** Multiclass classification
eXtreme gradient boosting (XBG), random forest (RF),  k-nearest neighbors (kNN),  generalized linear model 
(GLM),  deep neural network (DNN) and convolutional neural network (CNN).

eXtreme Gradient Boosting (XGB)
 The accuracy, sensitivity, specificity, positive 
predictive value (precision), negative predictive 
value, and AUC of the XGB model, as determined 
through 10-fold cross-validation, were 0.91(95% 
CI: 0.85, 0.94), 0.39, 0.94, 0.26, 0.96, and 0.75, 
respectively. The variable importance analysis, 
presented in Figure 1, revealed that Lopburi 
Province, Songkhla Province, sleep duration  
before joining military training (in hours),  
Bangkok, and age (in years) were the top five 
most important attributes. Notably, certain pre-
ventable features, such as experiencing dark 
urine during the second week of training and 
having a history of dermatitis, emerged as in-
teresting variables. Dark urine indicates severe  
dehydration and rhabdomyolysis, while dermatitis 
can affect skin thermoregulation, albeit to varying 
degrees of severity. Some of these important 
variables are preventable and could be utilized as 
inclusion criteria for adjusted training programs 
or intervention groups.

Random Forest (RF)
 The RF model demonstrated similar per-
formance to the XGB model, with an accuracy,  
sensitivity, specificity, positive predictive value 
(precision), negative predictive value, and AUC 
of 0.91 (95%CI: 0.85, 0.94), 0.39, 0.94, 0.21, 
0.96, and 0.81, respectively, as determined through 
10-fold cross-validation. The top five most  
important attributes identified by the RF model 
were Lopburi province, Songkhla province, 
drinking alcohol 2-3 times per week within  
the past 30 days, age (in years), and history of  
decongestant usage in the past 30 days (Figure 2).

Common Findings Among Machine Learning 
Models
 When comparing the variable importance  
between the XGB, RF, kNN, and GLM models, 
we observed a common finding among the top 
five attributes in each model, namely, Songkhla  
province, which exhibited a high incidence 
of heat-related illnesses. Eight attributes were  
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Fig 1. Top 20 variable importance of the eXtreme Gradient Boosting (XGB) model.

Fig 2. Top 20 variable importance of the Random Forest (RF) model.

commonly found among the top 20, including 
Songkhla, Bangkok, no medication usage, BMI 
18.5-22.9 kg/m2, drinking alcohol 2-3 times per 
week within the past 30 days, BMI 23.0-24.9 
kg/m2, taking paracetamol in the past 30 days, 
and alcohol  consumption in the past 12 months. 
However, all predictors were utilized to achieve 
the best performance of our predictive models.

Deep Neural Network (DNN) 
 The DNN model exhibited accuracy, sensi-
tivity, specificity, precision, negative predictive  

value, and AUC of 0.89 (95%CI: 0.85, 0.93), 
0.57, 0.91, 0.29, 0.97, and 0.87, respectively. 
Deep learning is often considered a “black box” 
due to its complex interpretability. Given the small  
dataset with imbalanced classes, the performance 
of the DL model may not be as effective and 
may be prone to overfitting. Nevertheless, deep 
learning remains a robust algorithm for medical 
research, particularly in imaging recognition, 
automated interpretation, and treatment pathway 
selection. (33) 
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Discussion
 Our study represents the first use of the  
Royal Thai Army conscript database for  
predictive analysis, employing machine learning 
algorithms to enhance the surveillance and  
prevention of heat-related illnesses in military 
training programs. Heatstroke is a condition that 
can be predicted and prevented, but underdi-
agnosis and improper management can lead to  
severe complications and even death. It is chal-
lenging to detect heat-related illnesses as they can 
be easily confused with other infectious diseases 
like the flu, emphasizing the importance of rais-
ing awareness among supervisors who train new 
conscripts. Over the years, efforts at all levels 
of the organization have reduced the incidence 
of heat-related illnesses. However, the ultimate 
goal is to minimize these illnesses’ occurrence 
and associated complications. Applying machine 
learning algorithms demonstrates the potential 
of predictive models to achieve reasonably high 
performance in this context. 
 Our approach was designed to identify high-
risk participants early and provide preventive 
interventions. Phase 1 of our training program, 
the heat acclimatization training phase, spans  
the first two weeks, helping trainees adjust to 
the new environment and physical activity.  
Phase 2, the combat fundamentals and unarmed 
combat training phase, begins in the third week 
and lasts until the fifth week, involving more 
intense physical activity. Our records indicated 
high heat-related illnesses during Phase 1 and 
Phase 2. Therefore, we aimed to predict the  
occurrence of these illnesses before Phase 2 
and implement adjusted training programs for  
the identified high-risk group. By the end of  
the 10-week program, we anticipated reducing 
the incidence of heat-related illnesses.
 Our machine learning models achieved 91% 
accuracy in predicting heat-related illnesses before 
Phase 2, indicating that they can effectively con-
tribute to preventing future cases of the disease. 
Since assigning army doctors to every basic 
training unit is not feasible, the machine learn-
ing model can play a role in the underestimated 
prevention of heat-related illnesses and provide 

decision support to the supervisors of the basic 
training program. As part of future research,  
we aim to validate our model by applying pre-
dictive models to new conscripts and evaluating 
the incidence of heat-related illnesses, including 
heat edema, heat cramp, heat tetany, heat syncope, 
heat exhaustion, and heatstroke, at the end of the 
program. Furthermore, expanding the study’s 
sample size will enhance the model’s performance.
 The XGB and RF models are tree-based 
methods but differ in how trees are constructed. 
XGB builds trees iteratively, reducing errors 
by reweighting examples for each subsequent 
tree. It employs techniques such as regularizing 
base trees, approximate split finding, weighted 
quantile sketch, sparsity-aware split finding,  
and cache-aware block structure for out-of-core 
computation to prevent overfitting.(27) Conversely, 
RF is a tree-based algorithm that splits each tree 
node using a subset of random predictors. This 
strategy reduces overfitting issues and demon-
strates strong performance compared to other 
classifiers like discriminant analysis, SVM, and 
neural networks.(34) Each tree provides a classifi-
cation vote in a random forest, and the majority 
vote from all classification trees determines  
the final result. The number of trees (nTree) is 
crucial for obtaining a well-performing model, 
stable variable importance, and proximity  
measures. However, when dealing with large 
datasets, RF may require significant memory  
resources, and training can be time-consuming. 
 Comparing machine learning and deep learn-
ing methods, the former offers a better explana-
tion of the analysis process and more reasonable 
conclusions. In contrast, deep learning models, 
such as neural networks, are often considered 
“black-box” models due to their lack of inter-
pretability. In our study, traditional machine 
learning outperformed deep learning, likely due 
to the small dataset, and provided actionable  
insights for military training. Nonetheless, both 
approaches have their value, and deep learning, 
despite its limitations and tendency to overfit with 
small datasets, remains highly valuable in do-
mains such as image recognition and automated 
interpretation. In our study, the DNN model 
exhibited better performance than the CNN  
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model, which may be attributed to the small  
dataset not being well-suited for the CNN  
algorithm. However, CNN excels in tasks  
involving imaging data. 
 This study encountered several limitations 
that should be considered. First, the dataset used 
for model development was collected from a  
specific subset of conscripts within the Royal 
Thai Army, which may limit the generalizability 
of the findings to other populations or military 
settings with different environmental conditions 
or training protocols. Second, the imbalanced 
dataset of heat-related illness cases may also 
limit the robustness of the machine learning 
and deep learning models. Although techniques  
like SMOTE were employed to address the  
imbalance, the models’ predictive performance 
might still be affected. Future studies should  
aim to expand the dataset and explore more  
interpretable models to enhance practical  
applicability.

Conclusion
 In this study, we conducted the first analysis 
utilizing machine learning and deep learning 
techniques to predict heat-related illnesses among 
conscripts. Our findings demonstrated that the 
eXtreme Gradient Boosting (XGB) and Random 
Forest (RF) models achieved the highest accu-
racy in forecasting heat-related illnesses during 
Phase 2 of the military training program (from 
the third to the fifth week). Notably, the XGB 
model identified several influential attributes, in-
cluding the province of Lopburi, Songkhla, and 
Bangkok, pre-training sleep duration, and age, 
emphasizing their significance in the prediction 
process. Moreover, including regional factors 
among the top 20 variables suggests the necessity 
of examining training program structures across 
different regions alongside environmental tem-
perature and humidity considerations. To further 
enhance the applicability of our predictive model, 
future research should involve implementing 
our approach on new cohorts of Thai conscripts. 
Additionally, expanding the dataset’s sample  
size would contribute to refining the efficacy 
of machine learning and deep learning models. 
By leveraging these advances, the Royal Thai 

Army can proactively mitigate the incidence of  
heat-related illnesses and protect the well-being 
of its soldiers, thereby ensuring the success of 
military training programs.
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